Solving Quadratic Equations:
4.1 By graphing
4.2 By factoring

EXAMPLE: Solve $\mathrm{x}^{2}-4 x-5=0$
i) By factoring

$$
\begin{aligned}
& x^{2}-4 x-5=0 \frac{-5}{-5}+\frac{1}{-1}=-4 \\
& \frac{(x-5)(x+1)}{1}=0 \\
& x-5=0 \quad x+1=0 \\
& x=5 \quad \begin{array}{l}
x=-1 \\
\frac{x}{2}
\end{array}
\end{aligned}
$$

4.3 By completing the square
4.4 By using quadratic formula
ii) By completing the square

$$
0=x^{2}-4 x-5
$$

$$
=\left(-\frac{2}{\underline{2}}\right)^{2}
$$

* USE fr taring mitanaver

Completing the Square (radical) method:
Best to use if the equation is already in vertex form or it cannot be factored:

1. $x^{2}-10=0$

$$
\begin{aligned}
& \pm+10 \\
& \sqrt{x^{2}}= \pm \sqrt{10} \\
& x= \pm \sqrt{10} \rightarrow x_{1}=\sqrt{10}
\end{aligned}
$$

2. $(x-1)^{2}-49=0$
1) Complete the square (if $b \neq 0$)
2) Isolate the squared term
3) Take square root of both sides
4) Make sure to keep both \pm roots
5) *Discard extraneous root
for wed Prob lens where you'd have a restriction
on a variable

$$
\sqrt{(x-1)^{2}}=\sqrt{49}
$$

$$
\rightarrow x_{1}=7+1=8
$$

$$
x \rightarrow T= \pm 7 \quad \rightarrow x_{1}=1+1=3
$$

$$
x_{2}=-7+1=-6
$$

3. $(x+2)^{2}-5=0$

$$
\begin{aligned}
& \sqrt{(x+2)^{2}+ \pm 5} \pm \\
& x+z= \pm \sqrt{5} \\
& =2
\end{aligned}, \quad \begin{aligned}
& x_{1}=\sqrt{5}-2 \xrightarrow{2}-2+\sqrt{5} \\
& x_{2}=-\sqrt{5}-2 \text { or }-2-\sqrt{5}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
\rightarrow b=4\left(\frac{b}{2}\right)^{2}=\left(\frac{4}{2}\right)^{2}=(2)^{2} & =4 \underline{y} \\
& +4-4
\end{aligned} \\
& \left\{\begin{array}{l}
\text { 4. } \begin{array}{l}
0=x^{2}+4 x-10 \\
0=\left(\frac{x^{2}+4 x+4}{\downarrow}\right)-4-10 \\
0=(x+2)^{2}-14
\end{array}
\end{array}\right. \\
& \text { 5. } 5=2 x^{2}-8 x \quad \longrightarrow b=-4 \\
& \begin{aligned}
S & =2\left(x^{2}-4 x\right) \\
S & \left.=2\left(\frac{6}{2}\right)^{2}=\left(\frac{-4}{2}\right)^{2}=(-2 x+4]-4\right)
\end{aligned} \\
& \text { Solve for } x\left\{\begin{array}{c}
0=(x+2)^{2}=14 \\
+14 \\
\pm \sqrt{14}=\sqrt{(x+2)^{2}}
\end{array}\right. \\
& \begin{array}{l}
\pm \sqrt{14}=\sqrt{(x+2)^{2}} \\
\pm \sqrt{14}=x+2,
\end{array}, x_{1}=\sqrt{14}-2 \\
& S=2\left([x-2]^{2}-4\right) \quad \rightarrow \pm \sqrt{\frac{13}{2}}=\sqrt{[x-2]^{2}} \\
& 5_{+8}=2[x-2]^{2}-8 \\
& \frac{13}{2}=\frac{2[x-2]^{2}}{\not z} \\
& \text { Application Problem }
\end{aligned}
$$

How far does the soccer ball travel if the function that models its trajectory is as follows?
$h=$ height $x=$ horizontal distance $h(x)=-0.016 x^{2}+1.152 x-15.2$

